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Dissipative Two-Four Methods for 
Time -Dependent Problems 

By David Gottlieb and Eli Turkel* 

Abstract. A generalization of the Lax-Wendroff method is presented. This generaliza- 
tion bears the same relationship to the two-step Richtmyer method as the Kreiss- 

Oliger scheme does to the leapfrog method. Variants based on the MacCormack 
method are considered as well as extensions to parabolic problems. Extensions to 
two dimensions are analyzed, and a proof is presented for the stability of a Thommen- 

type algorithm. Numerical results show that the phase error is considerably reduced 
from that of second-order methods and is similar to that of the Kreiss-Oliger method. 

Furthermore, the (2, 4) dissipative scheme can handle shocks without the necessity 
for an artificial viscosity. 

I. Introduction. Several authors (e.g. Roberts and Weiss [18], Crowley [3], 
Kreiss and Oliger [9], Gerrity, McPherson and Polger [6] ) have suggested that one 
does not always have to treat the space and time dimensions in an equal manner even 
for hyperbolic problems. This is reasonable for problems with large spatial gradients 
but a slow variation in time. An example of such behavior is a stiff system where the 
fastest sound speeds are of marginal significance. Since it is these sound speeds that 
determine the step size, the physically important parameters will not vary much over 
a few time steps. Another area of application is to problems where one is only 
interested in the steady state solution. In addition they stress that halving the mesh 
spacing multiplies the time by 2d+ 1 for a d-dimensional problem. 

Most higher-order methods are constructed using the method of lines. In this 
method one replaces the space derivatives by an approximation usually of at least 
fourth-order accuracy. The resulting differential-difference equation is then solved by 
a standard routine. Frequently the time derivatives are replaced by a leapfrog 
approximation (see, however, Gazdag [5] and Wahlbin [23] ) which leads to energy 
conserving methods. However, it is frequently desirable to use dissipative methods. 
The major advantage of dissipative schemes is that they are more robust than non- 
dissipative methods, i.e. they are less sensitive to a variety of disturbances. The 
dissipative methods are less likely to suffer from nonlinear instabilities (see Fornberg 
[4] ). The spread of boundary errors into the interior is more serious for nondissipa- 
tive methods especially in multidimensional problems (Kreiss and Oliger [10]). It is 
also impossible to integrate equations with imbedded shocks unless the approximations 
contain some artificial viscosity. Kreiss and Oliger [10] suggest adding an artificial 
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viscosity term to the leapfrog-type schemes. Here we choose the alternative approach 
of using a method which is inherently dissipative. In the results section we will 
compare these two approaches. 

The schemes considered in this paper are two-step generalizations of the Lax- 
Wendroff method. Both Richtmyer-type and MacCormack-type multistep methods 
are considered. These algorithms thus have the additional advantage that they are 
minor modifications of the standard two-step methods so that existing codes using 
such methods as modified Richtmyer, Thommen or MacCormack can be improved to 
give fourth-order accuracy in space with a ninimum of programming. We shall first 
discuss hyperbolic systems and later extend this to include parabolic terms. 

II. One-Dimensional Hyperbolic Problems. We consider the following one- 
dimensional divergence equation 

(2. 1 a) ut =x + S 

or 

(2.1b) ut=Aux+S 

where f and S are vector functions of u, x and t and A is a matrix function of u, x, t. 
In addition we shall assume that A has real eigenvalues and can be uniformly diagonal- 
ized. We shall construct a finite-difference approximation only to the divergence 
equation (2.1a); however, the generalization to the quasi-linear equation (2.1b) is 
straightforward. 

We wish to construct a finite-difference approximation to (2.1a) which is fourth- 
order in space and second-order in time. Before proceeding we need to define this a 
little more precisely. Kreiss and Oliger [101 define a scheme to be of order (p, q) 
if the truncation error has the form 

(2.2) (At) . O((At)p + (AX)q). 

This definition is fine for leapfrog-type methods. However, for more general schemes 
all combinations of the form (At)1(Ax)m can appear in the truncation error, not just 
those that occur in formula (2.2). Hence, we shall generalize the definition and call 
a scheme of order (p, q) if the truncation error has the form 

(2.3) E = Ath(At, Ax), 

h = 0((A)q+1) whenever At = O((AX)qP). 

For the special case h = (Atf + (Ax)q this definition agrees with that of Kreiss and 
Oliger. 

With this definition in mind we consider the following family of schemes 

Wj+1/2 = (W.+ + w7j (w7n+2 + W7 l) 

(2.4a) + X [(1 +in, (tJ, nf) - _(f f ) + j(Sn + S7) 
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n+~1 =wn+nf?+~ -fo ') 32a - 15 (n -q1 
L 2a /+1/2 j-1/2 48a l 7+i -f1) 

(2.4b) + 16X (+2 Jf2)7J 

+ 16a [4(S7j+j2 + Sn+ae ) + 2(8a-3)Si-(Sn+1 + SU 1)I. 16a 1-~~j1/2)1 i+ 1 

Here, fi = f(w7?), X = At/Ax and a, a are constants. It is readily checked, by a 

Taylor series expansion, that this scheme is second-order accurate in time and fourth- 
order accurate in space for all a, a (a 0 0) for both linear and nonlinear 
equations with sufficiently smooth solutions. That is, the local error is 
O(At[(Ax)4 + (At)(AX)2 + (At)2]). The amplification matrix associated with this 
approximation is 

(2.5) GQ) = I + iXA sin t (4- cost) - X2A2(1 - cos t)(2 + a - acost). 3 

We note that G is independent of a. However, for nonlinear problems a can affect 
the solution (see McGuire and Morris [141 ). 

Since we have assumed that the matrix A is diagonalizable, the von Neumann 
condition is both necessary and sufficient for stability. It is readily checked that if 
g is an eigenvalue of G and "a" a corresponding eigenvalue of A, then 

Ig 12 = 1- X2a2(1 - COS t)2 {a - + 4(1 - cos t) + 1(1 - cos t)2 

(2.6) 

- N>)2 I1 + a(l - cos t) + 4(1-cos t)2]} 

and so the stability condition is given by 

- + 8 + 4 2 

(2.7a) (Xa)2 < min m2 
O0x61 (1 + ax)2 

For a not in the interval ((1 + V/17)/6, (- 1 + V/13)/3) (about (.853, .868)) the 

stability condition becomes 

(2.7b) (?a)2 < min(a 3' 1 + 

For (1 + VI17)f6 < a < (- 1 + V13)f3 the allowable time step is marginally less 
than that given by (2.7b). Thus, a practical sufficient condition is that the scheme 
is stable if 

(2.7c) Q 3)2 ? .99mn(a- 1 + 

For example, if a < 1/3 the scheme is unconditionally unstable while if a = 1, we 

require that I a I S V2/2. The largest time step is allowed when a = (- 1 + V/13)/3 
in which case (Xa)2 < (- 2 + V/13 )/3 or I Xa I S .731 . This is very slightly larger than 
that allowed by the Kreiss-Oliger scheme which permits I Xa I < .728. 

The family of schemes given by (2.4) is of the Richtmyer type of two-step 
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methods. It is also possible to construct a scheme within the spirit of MacCormack 
methods [13]: 

-W + ? [rf12 + (1 - + (r - l)fI4 + (At)Sj, 

n 1 +X 
(2.8) W+ = 2(W ? ) [(l - r)ff' ) + (2r - l)fI() -Trf-2I 

2 ( +Ifj+ 2 -j+I 2f? f-lfi-2] + 2jSi') 

For linear problems with constant coefficients this again is a (2, 4) scheme for all r. 

In fact the amplification matrix is again given by (2.5) if we identify 

(2.9) a =-4r( -r); r = Y2 (l -+? /i). 

For variable coefficients the truncation error has the form 

E= At[- 1/2(r + 2)(AxfX)x(Ax)(At) + O((AX)4) + O((At)(Ax)2) + O((At)2)]. 

The scheme given in (2.8) has a variant defined by using backward differences in the 
first step and forward differences in the second step. The choice of r = - ? allows a sta- 

bility condition of XA S ? and is a (2, 4) scheme. For r = - l? alternating these two 
variants at successive time levels will cancel the (At)2(AX) error and yield a (2, 4) scheme 
even for variable coefficients. 

For the special case r = - 1/6 (a = 7/9) this general family reduces to a scheme 
that is similar to the original MacCormack scheme. In this case (2.8) reduces to 

Wj 6 (7 f = + (+2 + 8f1+I - 7f) + (At)S, 

(2.10) 1+ fi)~f) 

W,n 2w + w( -(. )W ) + 12(J) )-8f 1 ) + f (1)) + At S(1) 

Therefore, it would be easy to modify a code using the MacCormack scheme to be of 

higher order. This method is stable when XA < 2/3. Furthermore, for problems with 

second derivatives (e.g. Navier-Stokes) the extra mesh points are needed anyway and 

no new complications arise (see Section 3). 
The MacCormack-like method, (2.10), has the advantage that fewer arithmetic 

operations are required than for the generalization of the Richtmyer method (2.4). 
Although the leapfrog and Kreiss-Oliger methods require the least amount of compu- 
tations, the addition of an artificial viscosity reduces the apparent speed advantages. 
In the introduction we have discussed some of the advantages of schemes that are 

inherently dissipative. Lerat and Peyret [12] have shown that the post shock 
oscillations can be reduced by choosing the proper variant of the MacCormack scheme. 
One would expect that the appropriate variant of the MacCormack-like (2, 4) method 
would have similar properties. 

Since both (2.4) and (2.8) have the same amplification matrix we can discuss 

both schemes (at least for linear problems) simultaneously. We shall therefore restrict 
discussion to formula (2.4) with the amplification matrix given by (2.5). The corre- 
spondence for the MacCormack-like (2, 4) scheme is then given by (29). 
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For many problems the point of importance is not the amplitude of the waves 
but their velocity. Hence, it is important to analyze the phase errors that occur by 
replacing the differential equation by a difference equation. In fact this will be the 
major advantage of higher-order accurate (in space) schemes. Equation (2.6) shows 
that the dissipation of the (2, 4) method is approximately the same as for the Richtmyer 
(2, 2) method. However, the phase error of the (2, 4) method can be much smaller for 
sufficiently small time steps. Since the matrix A is diagonalizable we can transform 
(2.1) to a system of uncoupled equations (assuming S = 0). Hence, we shall restrict 
our attention to a single scalar equation ut + aux = 0. 

In any discretization procedure we are able to approximate well only the long 
waves. Thus, the phase error of the higher frequency components is of little 
significance, and our main interest is for t sufficiently small. We shall, therefore, 
content ourselves with a Taylor series expansion of the phase error. We define the 
relative phase error as 

(2.11) EP = (P PA)IPA 

where P is the phase of the approximation and PA is the phase of the solution to the 
differential equation. Straightforward algebraic manipulations yield that the relative 
phase error of the (2, 4) method is given by 

E1 =l 2a2 120 
- 15(a 2- X2a2 6X4a4Lt4 

+ o(q6).. (2.12) P6--a4-1 

In order to study the effectiveness of the scheme we shall compare this with the 
phase error for other methods. The phase error of the Lax-Wendroff method is 

(2.13) E2= - 1 - X2a2)2 + 1 + 5X2 - 6X4)4 + Q(t6). p 6 ~~~~120 
The phase error of the leapfrog scheme is 

214) E3- - (I - x2a2)t2 + -i(1 - 10X2a2 + 9X4a4)t4 + Q(t6) 

while that for the Kreiss-Oliger method is 

(2.1 5) F= 22- 04 - 2 1- 4)t4 + Q(t6). 

Comparing these methods we see that the leading terms of the (2, 2) schemes 
are the same as are those of the (2, 4) methods, but there are differences between 
the two groups. The (2, 2) schemes have a lagging phase (EP < 0) while the (2, 4) 
schemes have a leading phase. Of greater importance is that the coefficient of t2 iS 
multiplied by X2a2 for the (2, 4) methods. Since we assume that Xa is small, this 
term is negligible. Specifically, we have assumed that At = 0((Ax)2) = O(q2) and 
so X2a2t2 is the same order as t4. Thus, the phase error of a (2, 4) method is of 
fourth order for sufficiently small At/Ax. It should be noted that using leapfrog 
in time and infinite order in space gives a leading phase error term which is identical 
to that of the (2, 4) methods. Hence, in calculating phase errors of difference schemes, 
it is important to consider the time discretizations as well as the space differencing. 
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We conclude this section with a discussion of how to choose the free parameters 
a, a (r in (2.8)). It is obvious that this choice will be determined by what one is 
trying to optimize. Choosing a = 3/8 in (2.4) will minimize the computer time with- 
out affecting linear stability and so was used for all the tests in the result section. The 
choice of a does not affect the timing for the Richtmyer-like methods. However, 

choosing r = - 1/6 does reduce the required computer time for the MacCormack-like 
scheme. The importance of these timing reductions will depend on the complexity 
of the flux and source terms. 

An alternative approach is to choose the free parameter a to optimize some 
characteristic of the scheme. For example, we may wish to choose a so as to allow 
the largest possible time steps consistent with stability. We have already seen that if 

a = (- 1 + s,/13 )/3, then the Courant number is approximately .731. For .83 < a < 

1 the Courant number is still above .7. For many applications we wish to minimize 
the amount of dissipation within the scheme. By looking at (2.6) for small t we see 
that the dissipation is reduced by choosing (Xa)2 near a - 1/3. As long as a < 
(1 + s,/17)/6 we can choose (Xa)2 as close as we wish to a - 1/3 without losing 
stability. Of course this applies only to scalar problems, while for vector equations 
the number "a" would be replaced by the sound speed of most importance. Then 
waves traveling at this speed will be only slightly dissipated while others will be 
damped more sharply. Hence, if one wishes to increase the allowable time steps 

while limiting the dissipation one would choose a about .83 and then choose the 

time step close to the allowable limit. 
In many cases small dissipation does not imply an increase in accuracy. For 

example, the leapfrog and Lax-Wendroff schemes display similar L2 errors though 

their dissipative properties are quite different. Thus, in many instances we wish to 

decrease the phase error rather than decrease the dissipation. As already discussed, 

(2.12) implies that the relative phase error decreases as one decreases the time step. 
Hence, in this instance we are no longer interested in choosing a so as to increase the 

allowable time step. Instead we choose a to minimize dissipation as well as phase 
errors. Thus, we choose Xa near the stability limit with Na small. In trial experi- 

ments, a Courant number of Xa = .25 yields reasonable results for one-dimensional 

problems (see Oliger [16] and Abarbanel, Gottlieb and Turkel [1]). In this 

particular case a choice of a = .4 would be appropriate. The graphs discussed in 

the result section confirm this prediction. Thus, the family of schemes given by 
(2.4) or (2.8) has the property that various features can be optimized by just 
choosing the appropriate choice for the free parameter. Hence, there is more discretion 

left to the user in adapting the scheme to his particular problem. 
Equation (2.6) implies that the (2, 4) scheme is fourth-order dissipative in the 

sense of Kreiss. This is the same order of dissipation as in the (2.2) Richtmyer 
method. Choosing a and AA appropriately can reduce the coefficient of dissipation 
but not the order. Thus, it is not possible to reduce the dissipation sufficiently for 

many problems. A solution to this difficulty is to alternate the dissipative (2, 4) 
method with the Kreiss-Oliger scheme. This composite scheme is now a three-step 
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method of which the first two steps are given by (2.4a), (2.4b) and the third step is 

(24) wl+2 
- 

Wz + At&c ! [8t+ 1 - f .n+I f+1 _fn'+ )] + 
2,AtS 

+l 

It is readily calculated that the eigenvalues of the amplification matrix are such that 

Ig 12 = 1 - 4X4a4(1 - cos t)3(1 + cos t)(4 - cos 

(2.6) { 
I 

+ 4( cos ) + 
I 

cos )2 

(a)2 [? + (1 -cos t) + ? (1 -cos t)2 

Thus, the scheme is now sixth-order dissipative for long wave lengths while I g 12 = 1 
for t = 7r. It is obvious by comparing (2.6) with (2.16) that the stability criteria for 
the two- and three-step methods are identical. Since (2.4c) does not involve many 
arithmetic operations the composite three-step method will also be more efficient. 
Such methods for second-order methods are described in more detail in Turkel [221. 
R. Warming (private communication) showed that one can also decrease the 
dissipation by considering three-step (2, 4) methods. One can also consider three-step 
third-order methods in order to reduce the dissipation. 

III. Parabolic Equations. In fluid dynamic problems one is frequently interested 
in extending the previous results to equations that include a small viscous term. At 
high Reynolds numbers the restriction imposed by the parabolic stability condition 
is comparable with the Courant condition. Furthermore, (2, 4) schemes are more 
natural for parabolic equations than for hyperbolic equations. 

A second-order in time explicit method for a parabolic equation in one space 
dimension requires a numerical domain of dependence of at least five points at the 
previous time step. Thus, any of the variants of the multistep (2.2) schemes require 
five net points in each direction in order to advance the solution for the Navier-Stokes 
equations. In principle a (2, 4) method should not require any more points and so 
one would increase the accuracy of the solution without complicating the problem. 
From (2.4a) it is seen that the first step of the Richtmyer-like (2, 4) method 
requires information at the four points j - 1, j, / + 1, j + 2. Since an evaluation of 
second derivatives at the second step requires at least three points, it follows that this 
method requires at least seven points in order to have second-order accuracy in 
time for the parabolic terms. Instead, we shall study generalizations of the 
MacCormack-type method given by (2.8). 

We consider an equation of the form 

(3.1) ut =fx +(AuA + S. 

The straightforward approach is to replace h by fj + Aj(wj - wj11 )/Ax in the first step 
and f-(l) by f,(l) +A (w1+ - w1)/Ixin the second step of Eq. (2.10). This results 
in a truncation error of the order At[(Ax)4 + (At) (Ax)]. Another approach is to let 
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w) =w + At [Tf + (1 - 2T)fj+I + (T - l)fj] 

+?A [Aj+ I (wj+2 
- w+ )-Aj(wj+X -wj)] + (At)Sj, 

(3.2) 

wj+ = + wM)) + [(1- T)f-j() + (2T- I)f ) f (T1] 2 (Wi i 2Ax I- 
- 

At I 
2Ax 6 ) j+ 2 2hj+ I + 2fjh- fj-2 ] 

At 
+ [Aj(wj(l) - wj(- ) ) - Aj_ Iw l ) -wl2 )] 

-2@x)2 [Aj+2(Wj+2 - wj+ 1) + Aj+ l(5w1+2 - 13w1+Il + 9w; - wj1 1) 

+Aj(Wj+2 - 13w+1 + 24wj- 13w_1 + Wj-2) 

-Aj1 (wj+1 - 9wj + 13w11 - 5Wj-2) - Aj-2(W- 1 - Wi-2)] 

+ AtS(1) 
2 1 

As before, T is a free parameter which can be chosen to reduce the number of arith- 
metic operations or to minimize the phase error of the convective part of the solution. 
The truncation error behaves as 

T = (At)O((AX)4 + (At)(aX) + (At)2) 

and for constant coefficients 

T = AtO((AX)4 + (At)(AX)2 + (At)2). 

The above algorithm has the disadvantage that it is not a true (2, 4) scheme for 
nonlinear problems because of the (At)2(AX) term in the truncation error. An 
alternative approach is to use the Richtmyer-type method (2.4) for the convective 
terms. The parabolic terms can then be incorporated by using a splitting technique 
(see Strang [19], Marchuk [15]). Thus, we label the numerical procedure given by 
(2.4) as L. We then follow this by using (3.2) (with f = 0) and label this procedure 
as M. In general this splitting will no longer be second-order in time. However, it is 
known that the most efficient procedure is to alternate the order of the operations, 
i.e. at one time step to use ML and at the next time step to use LM. This procedure 
does not require more operations than the combined algorithm given by (3.2). It 
is now straightforward to show rigorously that the stability condition is given by the 
more stringent of the hyperbolic and parabolic restrictions. It can also be shown that 
this splitting preserves the (2, 4) accuracy of the method even for nonlinear problems 
(see Gottlieb [8] ). That is, even though only second-order splitting is used this is 
necessary only to preserve the second-order accuracy in time. The fourth-order 
accuracy in space is not destroyed by any splitting procedure. 
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It is now no longer necessary to use the same algorithm for both the convec- 
tive and dissipative terms in (3.1). In many instances it is desirable to use implicit 
methods for the parabolic part of the splitting. This is particularly useful when the 
convective terms are nonlinear but the viscosity terms are linear. Then the implicit 
parabolic part is easily invertible and does not affect the stability criteria. The 
allowable time steps will then be determined only by the convective terms. 

IV. Two-Dimensional Problems. There are two ways that one can generalize the 
previous results to multidimensional problems. The first is to use a splitting technique 
similar to that described in the last section. This will preserve the (2, 4) accuracy of 
the solution and can incorporate both the hyperbolic and parabolic components of the 
equation. Another approach is a straightforward generalization of the finite-difference 
equations. Here we shall only consider generalizations of the Richtmyer-type scheme 
(2.4) for hyperbolic equations. 

The natural extension to two space dimensions would be a generalization of the 
Burstein schemes [2]. In this method the intermediate results are calculated at time 
t + oAt and at the center, (i + 2, j + ?2), of the mesh cells. We shall now show 
that no such two-step scheme is possible which is both (2, 4) accurate and also stable 
for arbitrary symmetric hyperbolic systems. 

Consider the system 

(4.1) u =fx ?g1 =Aux ?Buy 

In order to simplify the notation we introduce the averaging and differencing opera- 
tors 

wi + 1/2, j+ wi-112 t , ij=t+ / jj+12, 

We then consider the general scheme of the form 

n+ = - 1(2 + 2)W 

? oX[-1 41( + ? ) + 1[ f2Q ,f2, [i'g]' 

n+1 c'fl+L5 
-02x y xy yx 

(4.2) 
n[rl(5 fn+ ce )?(2? w = W+ ? 5yPxgnpa) + (62 + x3 + +4 + 3 +xf 

? ( 2 + 38x + ?4 x ?yPyg + ?5 + a6 y + ?7 6 3t 

+ (5 ? ? 2 Ii4)i5 p)3,2,g3- 1 

- 
4( + 72? X YPY 

Define 

M = A sin 2 cos ?1 + B sin 72 cos N = A sin t cos ? + B sin 71 cos 7. 2 2 2coa2t 2 2 2 2m 

The amplification mari for th4 inaizdeqaiosi 



712 DAVID GOTTLIEB AND ELI TURKEL 

( sin 24+ sin 2 !1 

+ a 1 + l (sin2-+ sin2> a2 sin2 sin211 

+ 2iVfcos t cos [jj3 + 214 + 15 + 17 + 7y + 72 

(4.3) in in27 - (82 + 94) S 2 +S2 2)+ 07sin 2 -sin 2 

+ 2iV [12 - 4 + 215 + 16- - 72 + 44-s5 - 6 + yl + 72) 

* (sin2 - + sin2 -) - (14 136 + 'y2)sin2 sin"]. 

When A and B are scalar one can choose t and 71 so that M = 0 but N * 0 and so G= 

I + iqN which is not stable. Hence a necessary condition for stability is that q(t, r) 
vanish identically for all t, 77. 

Thus, we require 

(1) 12 - 14 + 215 + 16 - (71 + 72) = 0 

(4.4) (2) 14 - 15 - 16 + y + 72 = 0, 

(3) 4 - 6 + 72 = 0. 

For (2, 4) accuracy we also require 

(4) 1 + 12 +13 +134 +35 +?16? 7 = 1, 

(4.5 
(5) c13I = 1/2, 

(' ) (6) 11 + 4q2 + 3 + 4) + 10(5 + 16 + g7) - 6(y1 + 72) = 0, 

(7) 11 + 213 + 44 + 216 + 417 = 0. 

A straightforward calculation shows that these equations are inconsistent and so no 
scheme of the above type can be both stable and (2, 4) accurate. 

As an alternative we now construct a method of the Thommen type [20]. In 
this method there are two intermediate levels: one for the f flux and one for the 

g flux term. The amplification matrix for the (2, 2) scheme is identical with that of 
the one-step Lax-Wendroff. We, therefore, consider 

(I) (l 2 W + Xbxl4a,x-a2y a L X 82 ) 

X ,t4Ii-610i162+-a68 

2 4x 4 5y 1 166 6x 3x 

2 / .4` v4 16 46 1 6y 

W(2) = ly I1 - 16Y2 W + 2-xM y -44 -4Y+ 6 6xy) 
(4.6) 2 y 2 4 7 4 + y 6 6x) 

x = w I f(lJ 2J + 52 
I 2 1 

a 62 g 
2 y 4 7 x 4`8y 16 ~9 XY& 

W~t1 -w +X6f1) + X/2) - X6 p 
1.1 IA~~~~2 24 
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This scheme has order of accuracy (2, 4) for both linear and nonlinear problems for all 
values of the free parameters cia. Thus, these parameters can be chosen to improve the 
stability criterion or reduce the phase error, as in the one-dimensional case. The 
amplification matrix of this scheme is 

G(Q, 1) =1 + 2iX XAsin 2 cost(4- cos2 ) + Bsin1 cos 7 (4 -Cos2)] 
3 21 2 - 

- 2X2 [A2sin2 (1+ail sin2 t + a2 sin2 2- + a3 sin2 I sin2 ) 

(4.7) + B2sin22 (I + a7 sin2 t + a8 sin2 2- + a9 sin2 t sin2 7) 

+ (AB + BA)sin tsin - cost 

Cos 7 (1 + a4 sin2 t + cf sin2 + a6 sin 2 sin2R)] 

It is exceedingly difficult to find a stability criteria for general matrices A and B 
as a function of the nine free parameters. We shall therefore only obtain an analytic 
stability condition under the assumption that 

2 4 
%t2 =t3 = Ct7 = Ck9= ?, ?t4 = ?t5 = 3 ) 6-9 

(4.8) 

t= Ct8= C (= arbitrary). 

In this case the amplification matrix can be written as 

G(Q, 71) = I + 2iV - 2(N2 + cX2A2 + dX2B2), 
where 

p = cos 2 q=cos2' 

N=Ap ( 3 p2) 1XBq(3Q) 1-q2 

C 4 + +82 +i4p d= q4 (a4 + q 2+4q) 

A sufficient condition for stability is I (Gu, u) I < 1 for all unit vectors u (see [11]). 
Let n = lNu l, a = Au 1, and b = IBu 1. For symmetric matrices A, B we have 

I(Gu, u)12 = 1 - 4(n2 + Ca2 + db2) + 4(n2 + Ca2 + db2)2 + 4(Nu, u)2 
(4.9) 

S 1 - 4(n2 + Ca2 + db2) + 4(n2 + ca2 + db2)2 + 4n2 

Hence, a sufficient condition for stability is that 

(4.10) (n2 + cX2a2 + dX2b2)2 ? X2(ca2 + db2), 

but 
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n2 < 2X2 [a2p2 (i + 2p2) 2(1 - p2) + b2q2 (I + 2q2) 2(1 - q2) 

(n2 + cX 2a2 + dX2b2)2 

< 2X2 22 F 2p2 + 2p2)2(l p2)] 

+ ca2 + 2 [b2q2(1 + q2) (1 - q2)] + db2. 

Substituting this back into (4.10) and using the definitions of c and d we find that a 
sufficient condition for stability is that 

8X4a4 (1 + I (a+ 4 ) p6 -2 + 8i4b4 + + I )q2 _ 4 q4 2 q6) 2 

X2a2&4 +8p2 +4p4) +X2b2 a I 
+9q2 + q4)4 

We assume that a > 1/3 so that at > (oa + 1/3), and 

1+I + -)4p2I4 _ 2 6<1 ?a2p2 

Thus, a sufficient condition is that 

8X4a4(1 + Cp2)2 + 8X44b4(1 + aq2)2 

X2a2 (a - + g + 4p4) + X2b2 (a 2 + 8 2 + q 4) 

Taking each part separately, a sufficient condition for stability is that 

3 +p2+p 
(4.11) 8(Xa)2 S min 

OP1. (1 + Ctp2)2 

and a similar condition for Xb. However, comparing (4.11) with (2.7a) we notice that 

the expression on the right-hand side of (4.11) is exactly the same as appears in the one- 

dimensional case. Hence, a sufficient condition for stability is that Xa and Xb be 
reduced by a factor of 1/V8 from that required in the one-dimensional case. So from 

(2.7c) we have that a sufficient condition for stability is that 

< -9 I 
I(__) 

.99 1 1\ 
(4.12) (2'a)2 _ 8 2 mni (a-3 + a) and (X)2 8 min a 3 1 I a) . 

For a more general choice of parameters than that given in (4.8) we use numeri- 

cal methods. Turkel [21] has shown that for the amplification matrix given by (4.7) 
a sufficient condition for stability for real symmetric matrices A, B can be obtained by 

replacing A and B by scalars. 
The question of stability is now reduced to finding bounds on the scalars A, B 

so that I G(, 7) I S 1. This can be found by running computer tests with a selection 
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of scalars A and B and for a set of #, i1 between - ir and ir. The results of this 
computer run are given in Table I. 

TABLE I 

Sujncient stabwity conditions for tq. (4.6) found by 

assuming that A and B are scalars 

parameters stability condition 

al=(I8=1 a =a =a0 a 
2 

a4 A2/3+ B2/3 <(1/3t -.79 1 8 ~ 2= 3=7= 9 ~ 4 53 ~6=9 -~j 

2 4 'A2 az 'L 
y=fa a 4--9--2 

ax 5 2 69 -4 

2Aa +2 <i al=2= 4=5 a7 a8 13 a6 a9 ?A +B2 <4 

cc =cc=cc= C 4=aX=cc=c=c0 A2/3+ B2/3 < .68 

V. Numerical Results. Two model problems were chosen to compare several 

methods. These problems contain the main features of hyperbolic systems: wave 

propagation and shocks. The first problem is a scalar constant coefficient equation 

u +ux =0, O?x<00, 0StS 10, 

(5.1) 

u(x, 0) =f(X) 

with an initial condition 

0, 0 Sx ?1, 

f (x) = sin (87r(x - 1)), 1 x S 2, 

O , 22 ?x <0oo. 

The solution is just a wave moving to the right: u(x, t) = f(x - t). The numerical 
domain of integration is chosen sufficiently large so that the boundaries do not 
influence the solution for 0 S t S 10. Figure 1 shows the solution at t = 10 using 
the two-step Richtmyer method with Ax = 1/40 and At/Ax = .9. Figure 2 shows 
the solution using the (2, 4) scheme (2.4) with ct = 3/8, a = 0.4 and At/Ax = .25. 
Figure 3 shows the solution given by the Kreiss-Oliger scheme with Ax = 1/40 and 
At/Ax = .25. Finally in Figure 4 we show the results obtained by alternating the 
(2.4) method (a = 1.0) and the Kreiss-Oliger scheme as described in Section 2. From 
these graphs we see that the phase error of the (2.4) dissipative scheme is considerably 
better than that of the Richtmyer method and is comparable with Kreiss-Oliger. For 
the set of parameters chosen, the scheme (2.4) possesses much less dissipation than 
the Richtmyer method. The composite dissipative (2, 4)-Kreiss-Oliger scheme also 
gives good results. 
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FIGURE 1 

The second problem is that of a shock wave for the fluid dynamic equations 

p+(Pu)A =?, (pu) +(pu2 +p) =0, Et+[u(E +P)Ix=o 

(5.2) 
E =p(e +?lu2); p= (y-1l)pe, 

with the initial conditions 

x<O x>O 

p=2.5 p=l1 
u =.6 +VS/ u =1 

p=4 p= 1 

These conditions correspond to a relatively strong shock. 
The results show that it is feasible to use the dissipative (2, 4) method on 

shocks without adding an artificial viscosity. Choosing time steps near the stability 
limit produces small overshoots. This is seen in Figure 5 for the Lax-Wendroff 
scheme with a CFL = .9 and in Figure 6 for the (2, 4) method with ax = 3/8, a = 1 
and CFL = .7. Here CFL is defined as AtIAx( I u I + c). Notice that for the (2, 4) 
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scheme the major overshoot is in front of the shock for both methods. As expected, 
decreasing a decreases the dissipation of the method and so enlarges the oscillations. 
For the first problem (5.1) we choose a = .4 to reduce the dissipation while we now 
choose a = 1 to increase the dissipation. In more realistic problems it may be possible 
to choose a as a function of the gradients so as to increase the dissipation only in the 
neighborhood of the shock. 

Figures 7 and 8 show the leapfrog and the Kreiss-Oliger schemes, respectively, 
using an additional viscosity as given by Kreiss and Oliger [10]. We chose a viscosity 
coefficient of 1.0; choice of a smaller viscosity led to large post shock oscillations. 
This large viscosity coefficient required the use of a smaller time step, CFL = 0.75, for 
the leapfrog method while the Kreiss-Oliger method was run with CFL = 0.5. Figure 9 
shows the Kreiss-Oliger method with a viscosity of 0.1 and CFL = 0.5 (choice of a 
smaller time step only slightly reduced the oscillations). The use of these parameters 
is not desirable for a smooth problem. Reducing the time step for the leapfrog method 
increases the phase error. A reduction from CFL = 0.9 to CFL = 0.75 increased the 

phase error by about 30% while a further reduction to CFL = 0.25 rendered the 
solution meaningless. Thus, the smaller time step required by the viscosity terms in 
the leapfrog method affects the accuracy for smooth problems as well as increasing 
the running time. The use of such large viscosity coefficients also causes a large energy 
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should be compared with Figure 3 which shows the solution obtained with the same 
scheme but without any viscosity. Any attempt to use time steps near the stability 
limit is disastrous for the Kreiss-Oliger method., From the above we see that when a 
problem contains both smooth and shocked regions it will be difficult to choose a viscos- 

ity coefficient for either the leapfrog or Kreiss-Oliger methods that will yield acceptable 
solutions in all regions. A similar phenomena occurs in the dissipative (2, 4) scheme 
where the choice of a is different for the smooth and shocked regions. 

The Richtmyer method required about 5.9 seconds of CPU time to achieve the 
solution for the shock problem shown in Figure 5. The leapftog method viscosity 
required 3.6 seconds. The (2, 4) dissipative scheme with CFL = 0.7 needed about 9.9 
seconds while the Kreiss-Oliger method with viscosity and CFL = 0.50 used 7.6 seconds. 
All programs were run on a CDC 6600 KRONOS system at NASA Langley. The leap- 
frog type programs require about twice as much storage as do the multistep methods. 
Had the two-step methods been programmed to use two storage levels rather than one, 

a substatial;tim savingsV woulNdA hkiav been realized. 
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VI. Conclusions. A two-step method is constructed which is fourth-order in space 
and second-order in time. The method can be constructed as a generalization of either 
Richtmyer- or MacCormack-type schemes. There is a free parameter, a, which can be 
chosen to either allow larger time steps or else change the inherent dissipation of the 
scheme or to improve the velocity of the solution. It is found that phase error is 
sharply reduced by choosing relatively small time steps, about a quarter of the Courant 

condition, rather than near the stability limit. Choosing a = 0.4 and a Courant number 
of 0.25 gives very good phase resolution with little dissipation. For problems with large 
gradients choosing a = 1.0 decreases the oscillations. 

Comparisons, in one dimension, are made with second-order methods and with 
the Kreiss-Oliger method. The phase error for the (2, 4) methods is much smaller 
than for (2, 2) schemes. Analysis indicates that the phase error for (2, oo) methods 
are about the same as for (2, 4) methods. For a shock problem very high viscosities 
are required for the leapfrog and Kreiss-Oliger methods to prevent violent post shock 
oscillations. This required the use of smaller time steps for the leapfrog method. The 
use of this large viscosity for smooth problems gives large energy losses. Furthermore, 
decreasing the time steps greatly increases the phase error for the (2, 2) methods 
while decreasing the phase error for the (2, 4) methods. These problems will create 
difficulties for calculations that contain both smooth and shocked regions. Boundary 
treatment of the dissipative (2, 4) scheme is being presented by Goldberg [7]. 

Since the dissipative (2, 4) method uses five points at the previous time step (in 
one dimension) it is possible to generalize the MacCormack-type method to include 
parabolic terms without increasing the domain of dependence. It is then necessary to 
alternate the order of the one-sided difference steps to preserve the fourth-order 

accuracy in space. 
In two space dimensions it is shown that one cannot construct a stable Burstein 

type (2, 4) method. As an alternative, we construct a Thommen-type scheme. An 

analytic stability condition is derived for one set of the free parameters while other sets 
are calculated numerically. 

Numerical results are presented for one-dimensional smooth and shocked flows. 
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